Calculation of the molar mass of elements

<table>
<thead>
<tr>
<th>Element</th>
<th>Structure</th>
<th>Calculation</th>
</tr>
</thead>
</table>
| copper (Cu) | metallic lattice—cations in a ‘sea of electrons’ | Its molar mass is simply its atomic weight. Atomic weight of copper from Periodic Table = 63.55
Molar mass of copper is 63.55g |
| oxygen (O₂) | diatomic molecule | Its molar mass is twice its atomic weight. Atomic weight of oxygen from the Periodic Table = 16.00
Molar mass of oxygen = 2 x 16.00 = 32.00g
Molar mass of oxygen molecules is 32g |
| carbon (C) | a covalent lattice in the allotropic form, diamond | The molar mass of carbon (diamond) is simply its atomic weight taken from the Periodic Table.
Molar mass of carbon is 12.01g |

Calculation of the molar mass of compounds

<table>
<thead>
<tr>
<th>Compound</th>
<th>Structure</th>
<th>Calculation</th>
</tr>
</thead>
</table>
| water (H₂O) | covalent compound consisting of molecules of two atoms of hydrogen and one of oxygen | Molecular weight = sum of the atomic weights of the product of each atom and the number of times it occurs in the compound
From the Periodic Table
Molecular weight = (2 x 1.01) + (1 x 16.00) = 18.02
Molar mass of water is 18.02g |
| sodium chloride (NaCl) | an ionic compound consisting of a lattice of sodium ions (Na⁺) and chloride ions (Cl⁻) on a one-to-one ratio | Use the empirical formula for sodium chloride to calculate its molar mass.
Empirical formula = NaCl
Molar mass = sum of atomic weights of each ion component
From the Periodic Table
Molar mass = 22.99 + 35.45 = 58.44g
Molar mass of NaCl is 58.44g |
| silicon dioxide (SiO₂) | covalent lattice network compound | Does not have a molecular formula so its empirical formula or formula weight is used for calculating its molar mass.
Molar mass = 28.09 + (2 x 16.00) = 60.09g
Molar mass of silicon dioxide is 60.09g |
| copper(II) sulfate pentahydrate or CuSO₄.5H₂O. | ionic compound as crystals in which some water still remains | Add the atomic weights of all the component atoms including the water.
M = 63.55 + 32.07 + (4 x 16.00) + 5 ((2 x 1.008) + 16.00) = 249.70g
Molar mass of copper(II) sulphate pentahydrate is 249.70g |
Using the formula \(n = \frac{m}{M} \)

\(n = \frac{m}{M} \)

\(n \) is the number of moles

\(m \) is the number of grams of the substance

\(M \) is the molar mass of the substance

Example 1

I have 22.45 g of copper. How many moles of copper do I have?

\(m = 22.45\text{g} \quad M = 63.55\text{g} \)

\(n =? \)

\[n = \frac{22.45}{63.55} = 0.35 \text{ mol} \]

I have **0.35 mol of copper**

Example 2

I have 12.3 moles of copper. How many grams do I have?

Use \(n = \frac{m}{M} \)

\(n = 12.3 \text{ mol} \quad M = 63.55 \)

\(m =? \)

\[12.3 = \frac{m}{63.55} \]

Multiply both sides of the equation by 63.55

\[12.3 \times 63.55 = m = 781.67 \text{ g} \]

I have **781.67 g of copper**

Example 3

I have 4.2 mol of a metal with a mass of 266.91 g. What is its molar mass, and what is the substance?

\(n = 4.2 \text{ mol} \quad m = 266.91 \text{ g} \)
\[M = ? \]

\[4.2 = \frac{266.91}{M} \]

Multiply both sides by \(M \)

\[4.2M = 266.91 \]

Divide both sides by 4.2

\[M = \frac{266.91}{4.2} = 63.55 \]

The molar mass of the substance is 63.55

Scanning the Periodic Table shows the substance with a. atomic weight of 63.55 is copper.

The substance is copper.

(Note we can assume the molar mass is the atomic mass because we are told that the substance is a metal.)

Using Avogadro’s Number, \(N_A \)

The number of atoms, molecules or formula units in a mole is Avogadro’s number, \(N_A \).

We can then say that \(n = \frac{N}{N_A} \) where \(N \) is the number of atoms, molecules or formula units.

Example 1

I have 0.5 mol of copper. How many atoms of copper do I have?

1 mol of copper has \(N_A \) or \(6.022 \times 10^{23} \) atoms

0.5 mol of copper has \(6.022 \times 10^{23} \times 0.5 \) atoms

I have \(3.011 \times 10^{23} \) atoms of copper

Or \(n = \frac{N}{N_A} \)

\[0.5 = \frac{N}{6.022 \times 10^{23}} \]

\[N = 0.5 \times 6.022 \times 10^{23} = 3.011 \times 10^{23} \text{ atoms of copper} \]

I have \(3.011 \times 10^{23} \) atoms of copper

Example 2

I have 29.2 g of copper. How many copper atoms do I have?
I first have to calculate how many moles of copper I have and then multiply by Avogadro’s number.

\[m = 29.2 \quad M = 63.55 \]

\[n = \frac{m}{M} = \frac{29.2}{63.55} \]

\[n = 0.46 \text{ mol of copper} \]

1 mol of copper has \(6.022 \times 10^{23}\) atoms

0.46 mol of copper has \(6.022 \times 10^{23} \times 0.46\) atoms

\[2.77 \times 10^{23} \text{ atoms are in 29.2 g of copper} \]